|
file | dydt.c [code] |
| An implementation of the van der Pol right hand side (y' = f(y)) function.
|
|
file | dydt.cu [code] |
| A CUDA implementation of the van der Pol right hand side (y' = f(y)) function.
|
|
file | dydt.cuh [code] |
| Contains header definitions for the CUDA RHS function for the van der Pol example.
|
|
file | dydt.h [code] |
| Contains header definitions for the RHS function for the van der Pol example.
|
|
file | generate_ics.py [code] |
| Generates initial conditions file for van der Pol problem.
|
|
file | gpu_macros.cuh [code] |
| Defines some simple macros to simplify GPU indexing.
|
|
file | gpu_memory.cu [code] |
| Initializes and calculates required GPU memory.
|
|
file | gpu_memory.cuh [code] |
| Headers for GPU memory initialization.
|
|
|
|
file | ics.c [code] |
| Sets same Initial Conditions (ICs) for all problems.
|
|
file | ics.cu [code] |
| Sets same Initial Conditions (ICs) for all problems.
|
|
file | jacob.c [code] |
| An implementation of the van der Pol jacobian \(\frac{\partial \dot{\vec{y}}}{\partial \vec{y}}\).
|
|
file | jacob.cu [code] |
| A CUDA implementation of the van der Pol jacobian \(\frac{\partial \dot{\vec{y}}}{\partial \vec{y}}\).
|
|
file | jacob.cuh [code] |
| Contains a header definition for the CUDA van der Pol Jacobian evaluation.
|
|
file | jacob.h [code] |
| Contains a header definition for the van der Pol Jacobian evaluation.
|
|
file | launch_bounds.cuh [code] |
| A number of definitions that control CUDA kernel launches.
|
|
file | plotter.py [code] |
|
file | sparse_multiplier.c [code] |
| Implementation for Jacobian vector multiplication, used in exponential integrators.
|
|
file | sparse_multiplier.cu [code] |
| Implementation for CUDA Jacobian vector multiplication, used in exponential integrators.
|
|
file | sparse_multiplier.cuh [code] |
| Header definition for CUDA Jacobian vector multiplier, used in exponential integrators.
|
|
file | sparse_multiplier.h [code] |
| Header definition for Jacobian vector multiplier, used in exponential integrators.
|
|